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is known. F/D ratios which differ greatly from the
statistical values are also interesting, because in the
present context they provide rather strong statements
about the dynamics; i.e., about the relative strength of
the invariant amplitudes.

As a case in point, consider the N*(1570) resonance
with JP=1%~. There is evidence that this state has a
coupling to Nn at least comparable to its coupling to
N7.0 This means that 7 is unlikely to lie between 0 and

10 7, Uchiyama-Campbell and R. K. Logan, Phys. Rev. 149,
1220 (1966).
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1. Tables III and IV reveal that the 852 and 8¢ of 1134,
and the 8 of either 56 are the only likely assignments,
using the statistical values. The former possibilities fit
in well with the work of Ref. 7. On the other hand, this
state has previously been mentioned as a candidate for
the 70~ by Gyuk and Tuan." If their hypothesis is ac-
cepted, then the observed coupling gives a fairly strong
constraint on the dynamics; for example, 70 dominance
is obviously favored.

UT. P. Gyuk and S. F. Tuan, Phys. Rev. Letters 14, 121 (1965).
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Sum rules of the superconvergent type are obtained for the =V helicity-flip and helicity-nonflip amplitudes.
The sum rules for the helicity-nonflip amplitudes are shown to be consistent with the Regge-pole-dominance
model. Investigation of the sum rule for B™ (v) leads us to speculate as to the existence of resonances on

Ng, A4, and N; baryon trajectories.

I. INTRODUCTION

ECENTLY, an exact sum rule for the 7 helicity-
nonflip forward-scattering amplitude with charge
exchange has been proposed in order to investigate
singularities in the complex J plane.!'? Assuming that
there are no other singularities in the complex J plane
except the p Regge pole above J=—1 at =0, we sepa-
rated the helicity-nonflip amplitude f©(») into the
p-pole term f,(v) and the remaining term f&'(»),
which vanishes faster than »~! at infinity. Since the
f&(») is odd under crossing symmetry, satisfies an
unsubtracted dispersion relation, and vanishes faster
than »~! for y —o, we were immediately led to the
following sum rule of the superconvergent type:

1 0
b= / (=) ¥[osp(0)— orp0) ]

T J

_47rBPPa;(V/“) } =0, (1>
with3
g’

Mo\2
I ; <__> =0.081-:0.002. (2)
m

2m

1K, Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967),
hereafter referred to as I.

2A, A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze,
Phys. Letters 24B, 181 (1967); D. Horn and C. Schmid, California
Institute of Technology Report, CALT-68-127 (unpublished).

3W. S. Woolcock, in Proceedings of the Aix-en-Provence Confer-
ence on Elementary Particles, 1961 (Centre d’Etudes Nucléaires,
Saclay, France, 1961), Vol. I, p. 459.

An experimental check of the above sum rule has sug-
gested to us that Eq. (1) holds* within the present ac-
curacy of the total cross-section measurements. There-
fore, we have concluded that the experiments support
the p Regge-pole-dominance model at high energy, even
though we cannot rule out the possibility of the exis-
tence of other singularities (including a p’ pole or a cut)
if the pole residue or discontinuities are reasonably
small.

This p-pole-dominance model has also been strongly
favored® by the remarkable diffraction shrinkage at
high energy for the reaction #~p — #%4n, and the
dip phenomena® observed in the above and other
reactions. The single-p-exchange model, however, pre-
dicted no polarization for the above reaction 7=+ p —
m%+n, which was not consistent with the observed
nonzero polarization.

Recently, a possible model to overcome this difficulty
was proposed by Desai, Gregorich, and Ramachandran.”
They pointed out that if baryon trajectories continue
to rise for quite large energies, then, as a consequence of
assuming the total amplitude to be given by the single
o Regge-pole term and the direct-channel contribution
from baryon trajectories, it is possible to explain the

4 See Table I and Fig. 1 of 1.

5 R. Logan, Phys. Rev. Letters 14, 414 (1965).

6 F. Arbab and C. Chiu, Phys. Rev. 147, 1045 (1966); S. Fraut-
schi, Phys. Rev. Letters 17, 722 (1966).

7B. R. Desai, D. T. Gregorich, and R. Ramachandran, Phys.
Rev, Letters 18, 565 (1967).
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magnitude and the energy dependence of the polariza-
tion as well as the differential cross section.

In the present paper we take the p-dominance model
as our starting point for both the helicity-flip and
helicity-nonflip amplitudes, and investigate the super-
convergence relations derived from the above assump-
tion. In Sec. II, we obtain a sum rule® for the helicity-
flip amplitude with charge exchange, which connects
the integral over direct-channel resonances with p Regge
parameters. We then show that the sum rule does not
seem to hold for the currently known baryon resonances.
Therefore, we speculate as to the possible existence® of
Ng, A, and N; resonances connected by the MacDowell
principle® to the N, A, and IV, resonances, since these
possible new resonances will contribute in such a way
that the sum rule may hold.

In Sec. III a sum rule for B®(y) which connects the
low-energy resonance parameters with the P and P’
Regge residues for the helicity-flip amplitude is dis-
cussed. Since the convergence of the integral is rather
rapid in this case, we use the above relation as an ad-
ditional constraint for the P and P’ parameters de-
termined from experimental data, which will be shown
to be useful in the investigation of =V polarization.

In Sec. IV, two kinds of superconvergence relations
are investigated from two different assumptions in
order to probe the J singularities with the vacuum
quantum numbers. One of them will be proved to be
equivalent to the sum rule for the s-wave scattering
length.!!

II. A SUM RULE FOR THE HELICITY-FLIP
AMPLITUDE B (v)

Let us begin with summarizing briefly the sum rule
derived in IT for the helicity-flip amplitude B (v). We
assume that B (v) can be separated as

BS@)=B,r)+B'), 3)
with
C‘p P ap—1
ImB,,(V)=ap(ap+1)—2<—> 4)
M5NU

in an asymptotic form at high energies. The factor
(a,+1) is included to emphasize the zero at a,=—1.
The quantity C, is defined to be dimensionless, and is
regular except for additional zeroes at a,=—2, —3,
—4, ---. Then, the function »B™'(»), which is odd
under crossing symmetry, satisfies an unsubtracted
dispersion relation and the following asymptotic be-
havior: vB&’(v) <y~L Therefore, we obtain the follow-

8 K. Igi and S. Matsuda, University of Tokyo Report, March,
1967 (unpublished), hereafter referred to as II.

9 C. B. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).

10 S, W. MacDowell, Phys. Rev. 116, 774 (1959).

K. Igi, Phys. Rev. Letters 9, 76 (1962); Phys. Rev. 130,
820 (1963).
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ing superconvergence sum rule:

/ dv v ImB™'(»)=0. (5)
0

Assuming the Regge asymptotic behavior to be already
established at high energies, v>v4 (we take v4=35.46
GeV as in I), we obtain

1 pra C’pap v 4\ ot
- 47I'f2+— / dv v ImB®) (y) = ———<__> . (6)
mJu

™ M

Experimental Test

Unfortunately, ImB©(») is not simply related to
cross sections. Therefore, we make the following approxi-
mations!? in the evaluation of the integral

v4
/ dv v ImBO)(v):
M

For »>v4, we may put
ImB ()=ImB,{), @)

since we have already assumed that the p Regge asymp-
totic behavior is established at these high energies.
Chew and Jones' have argued that the resonance and
Regge regions may overlap in some intermediate-energy
regions. Practically, Barger et al.!* have shown that a
considerable number of experimental data down to 1.4
GeV can be explained by a superposition of direct-
channel resonances and the Regge background term.
Therefore, we will assume

IMBO (»)22Bges ™ (»)+ImB,(v) ®)

for va>v>var. (var is supposed to be the lowest energy
at which Barger’s analysis is applicable; consequently
vuy=14 GeV was chosen.'*) Here, the subscript Res
stands for the contribution of all the direct-channel
resonances. Thus, it would be reasonable to use the
values of the direct-channel resonance parameters cited
in Ref. 14 (especially the total width and elasticity)
for vaS V>V,
For v<vj;, we may assume

IMBE ()=ImBgre (). 9)

In this energy region, as direct-channel resonance
parameters, those tabulated in the Rosenfeld table'®
have been used.

12 One of the authors (K.I.) wishes to thank Professor G. F.
Chew for helpful comments in the approximation for evaluating
the integral in IT.

13 G, F. Chew and E. Jones, Phys. Rev. 135, B208 (1964).

14V, Barger and M. Olsson, Phys. Rev. 151, 1123 (1966); V.
Barger and D. Cline, ¢bid. 155, 1792 (1967). In the present paper
we have calculated the low-energy integrals in the narrow-width
approximation, using the interference model by the above authors.
However, if the phase shifts of =V scattering become available
up to reasonably high energies in the near future, we can argue
more precisely about the superconvergence relations.

15 A. H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967).
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Tasre I. Contributions to

1 v,
IlE”fAdVVIlnBRcs(")(V) and ly=-—
T Ju
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m
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(v4=15.46 GeV) from cach resonance in the narrow-width approximation.
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Resonance Spin parity Total width Elasticity Contribution Contribution
(mass in MeV) JP Ty (BeV) m to Iy to I»

A;(1236) 3+ 0.12 1.0 16.4 —14.6
A5(1920) s 0.17 0.33 —0.50 9.8—14.8 (—2.0)—(—3.0)
A5(2420) L+ 0.28 0.11 —0.12 10.4—11.4 (—1.2)—(—-1.3)
A5(2850) 5+ 0.40 0.03 —0.05 6.9—11.4 (—0.5)—(—0.9)
A5(3230) 19/2+ 0.44 0.003—0.02 1.1—7. 6 (—0.1)—(—0.5)
N ,(1525) B 0.11 0.65 10.6 2.1
N ,(2190) i~ 0.24 0.15 —0.25 10.5—17.5 0.8—1.3
N ,(2650) L= 0.40 0.05 —0.08 10.7—17.1 0.5—0.8
N ,(3030) 13- 0.40 0.007—0.015 2.3—5.0 0.1—0.2
N ,(3350) 19/2- 0.10 0.003—0.01 03— 1.2 0.0—0.1
Na( 938) + —1.1 14.8
N, (1688) + 0.10 0.65 14.7—25.5 2.1—-3.7
N ,(2220) + 0.20 0.05 4.3 0.3
N (2610) i+ 0.30 0.025 5.4 0.3
N 4(2970) 17/2+ .
N,/ (1400) 3t 0.20 0.70 9.7 2.6
Ng(1570) - 0.13 0.30 0.1 0.0
Ng(1670) - 0.14 0.40 —6.1 —0.9
Ng/(1700) i 0.24 1.0 0.8 0.1
Ag(1670) - 0.18 0.40 —0.2 0.1

Total 106.6—151.4 2.6—17.1

By making use of approximations (7), (8), and (9),
the sum rule (6) would be modified as

1 pra Cooy fvar\*t?
—47rf2+"/ dy v ImBRes O (v) = (——) . (10)
T Ju T \p

In the narrow-width approximation, we can obtain

1 pra
- / dv v ImBRre, ™ (v)
u

™

7 Tigme (Mg —m?—p?)
=2 +Cr-
1,1 2 miqiyd

I+1
x[{ (Mzi—m)z—m}( _l)—ZMziml(l—H)]. (11)

The summation extends over resonances with 2mwy
> M 2—m?—u? Here Cy takes the values § and —3§
for I=% and I'=4%, respectively. I'iy, niy, and M, are
the total width, elasticity, and mass of the resonance
of total angular momentum J=/=%; m is the nucleon
mass; and g, is the center-of-mass momentum given by

[(Mli+m)2—ﬂ2]1/2[(Mlj;_m)2—ﬂ2]l/2
Q1= . (12)
oMo,

IFor each resonance, we tabulate the contribution to

1 pra
- / dy v ImBres ™ (»)
TS

in Table I. We then obtain the following numerical
values: The left-hand side of Eq. (10) is given by
106.6-151.4. The right-hand side of Eq. (10) is given by
23.2 for the solution (a) by Chiu, Phillips, and Rarita!?
(2,=0.576, C,=3.36); or 23.1 for the solution (b)!7
(a,=0.576, C,=3.35). Therefore, the sum rule (10) does
not seem to hold as long as we use only the currently
known baryon resonances in the above approximations.

Speculations

We wish to make some theoretical speculations as to
the reason why there is such a discrepancy.

1. Other Possible Baryon T'rajeclories

Some time ago the following speculation was made®:
The N (A,,N;) resonances could possibly exist, too,
as a consequence of the MacDowell principle,? if the
N, (As,N,,) resonances were to lie on the Chew-Frautschi
plot.’® As is evident from Eq. (11) and Table I, the
contributions to the integral

1 pra
“/ dvy ImBRes(—)(V)
"

™

from resonances on the N,, A; and NV, trajectories are
all positive except for the nucleon. However, if reso-

16 The range of values is due to the uncertainty in the elasticity
determination of Barger ef al. (see Ref. 14).

17C. B. Chiu, R. J. N. Phillips, and W. Rarita, Phys. Rev.
153, 1485 (1967).

18 C; F. Chew and S. Frautschi, Phys. Rev. Letters 7, 394
(1961).
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nances on the Vg, A,, N; trajectories exist at all,!® their
contributions all become negative. Therefore, the sum
rule (10) has a tendency to hold. Further investigations
on baryon resonances are thus quite important.

2. Possible Ambiguities in the A pproximations

Tirst, the widths and elasticities of higher baryon
resonances have not been definitely determined.
Secondly, the contribution of such a resonance, like the
Roper resonance (which is not found in the total cross-
section measurements), in our analysis, has been esti-
mated using the Breit-Wigner formula. This might also
be an ambiguous point. Thirdly, we assumed the
Regge asymptotic behavior to hold above v4 (=5.46
GeV). If, however, baryon trajectories which might
rise to infinite energies could give non-negligible con-
tributions even at high energies for »>»4, these effects
would also have to be taken into account. Experi-
mentally, the higher the energy, the more extra-
ordinarily small the elasticities become. Therefore, they
may be expected to be small.

If the sum rule (10) still does not hold even after all
the above possibilities have been checked, then the
assumption of no singularities for a,>J>—1 must be
abandoned.

III. A SUM RULE FOR THE AMPLITUDE
B®(v) AND =N POLARIZATION

Similarly, we can derive the following sum rule? for
the helicity-flip amplitude B®)(») which is odd under
crossing symmetry:

/ dy ImB™(5)=0. (13)
0
We have separated B (v) as
B®D@)= ¥ Bapipy@)+BP'(), (14
P({)=P,P’
with 5
Cpey/v\orer1
ImBapiy(v)=epw) Z <—> . (15)
u? \p

We assumed here that no J singularities extend above
J=0 at t=0, except for the P and P’ poles.

If the Regge behavior is assumed to hold at high
energies »>v4 as before, one can obtain

g7'2 m 4 1 m
= f dy TmB () =——
dr 22, %2

.4\ 2P
X X 51’(.')(:) . (16)

P(i)=P,P’ I’

19 Some of the possible candidates for the Ng resonances may
be found in the Rosenfeld table (Ref. 15).

20 R, Gatto, Phys. Rev. Letters 18, 803 (1967); L. A. P. Balazs
and J. M. Cornwall, Phys. Rev. 160, 1313 (1967). These authors
have also discussed the sum rule for the B (»). They confined
their attention to low-energy resonances.
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Following the same procedure as in the previous section,
Eq. (16) becomes

gr2 m VA 1 m
—t— dv ImMBRres ™ (v) =— —
47 2n? 212 u
_ M aP(i)
X ¥ cm(—> . an
P(:)=P,P’ u

The speculations 1 and 2 in Sec. IT should also apply in
evaluating ImBgres" (v). However, since the conver-
gence of the above integral is very rapid, the main
contribution comes from low-energy resonances like
N and A(1236) (see Table I). Thus, it is probable that
the other possible higher baryon resonances and ambi-
guities in their parameters will not affect the sum rule
so much.

Therefore, assuming Eq. (19) to be practically useful,
we can obtain an additional constraint to be imposed
on the helicity-flip Regge parameters for the P and P’
determined from experimental data. This constraint
would become useful in the investigation of =V polari-
zations. Chiu, Phillips, and Rarita!” obtained two possi-
ble solutions, (a) and (b), using total cross sections,
differential cross sections for w/V elastic and charge-
exchange scattering, and 7~ elastic polarization.

Let us impose the above constraint on the solutions.
Numerically, the left-hand side of Eq. (16) is calculated
to be 2.6-7.1.1% On the other hand, solution (a) (Cp
=—2.74, Cp-=—28.93) predicts the rlght hand side of
Eq. (16) to be —25.3. Solution (b) (Cp=—0.355,
Cp-=—0.951) predicts the right-hand side to be —2.7.
Both values should be compared with the magnitude
of the nucleon term g,2/4w (=215). Therefore, the solu-
tion (b) would be preferred.

IV. SUM RULES'FOR THE f(v) AMPLITUDE
AND SINGULARITIES IN THE
COMPLEX J PLANE

Let us define the amplitude?! f®)(v) by
f‘*”(V)Ef‘*’(V)— Z fro®),

(3)=P,P’
with
1 CP(i) v\ &P
I p ()= —are (—) . @®
4 ko \u

Since f®’(»)/v and »f’(v) are odd in crossing sym-
metry, we shall derive sum rules for each of the two
amplitudes and investigate the consequences.

(A) The dispersion relation for f™’(»)/v can be
written

Re f(+)’(y) f(+)’(()) g2 1 1 1 >
47r Zm(ug-—v vp+v
@y
+— f ( >Imf ) (19)
v+ v

1 We define f®(v)=[4® ()+vB® (p)]/4r.




1626 K.

with vp=—u?/2m. If there are no other singularities
except the P and P’ poles above J =0, the left-hand side
of Eq. (19) vanishes faster than »~!. Thus, we obtain

grl 2 o)
0= P (0) = ——— / dy' Tm————,
n

dvm w

)
14

This relation can be easily shown to be equivalent to
the sum rule for the 7V s-wave scattering length which
was used to deduce the P’ pole!! (see Appendix).

(B) We next come to the superconvergence sum rule
for »f®(») under the assumption that there are no
singularities with the vacuum quantum numbers except
that the P and P’ poles above J = —2. Then, we are led
to the following sum rule?:

w14
27r2f2—+“/ dv kv{orp()+oa+p()}

m 2u),
apw) VA ap(i)t2
Crw- <— . (21)
apm+2\p

= X

P(i)=pP,P’

The main point of difference between Egs. (20) and
(21) is that Eq. (21) was derived under much stronger
assumptions than Eq. (20). No singularities for 0>J>
— 2 were required in addition to case (A). Theoretically,
cuts?? and a fixed pole?® at J=—1 could possibly be ex-
pected. Let us check this experimentally using the above
sum rules [Egs. (20) and (21)]. The best parametri-
zation for the P and P’ poles is, according to Scanio,?
ap=0.69, Cp=0.810, and Cp-=2.63. Substituting these
values in Eq. (21), we find it to hold within an error
of 19,. Therefore, experiments are consistent with
weak-cut discontinuities, if they exist.

V. CONCLUDING REMARKS

As was discussed in Secs. I and IV, where the absorp-
tive part of the amplitudes ) (v) was expressed in
terms of total cross sections, the sum rules have been
shown to be quite consistent with the Regge-pole
dominance. The sum rule for B®(y) would be
useful as a constraint imposed on the helicity-flip

22 S, Mandelstam, Nuovo Cimento 30, 1148 (1963).

23 C, E, Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967);
S. Mandelstam and L. L. Wang, #bd. 160, 1490 (1967).

24T, J. G. Scanio, Phys. Rev. 152, 1337 (1967).
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Regge-pole parameters since the integral converges
rapidly and is saturated by low-energy resonances.
Investigation of the sum rule for B™(v), which con-
verges rather slowly, has led us to suggest a set of reso-
nances on the Ng, A,, and N, baryon trajectories. We
hope that a more careful search for other baryon reso-
nances as well as resonance parameters (especially
widths and elasticities) for all resonances, will be made
in the near future. If the sum rule for B (p) still does
not hold, even taking into account the above effects,
then one will be forced to introduce singularities above
J=—1 in addition to the p pole.

APPENDIX: EQUIVALENCE OF EQ. (20) WITH
THE SUM RULE FOR THE s-WAVE
SCATTERING LENGTH

In order to express f’(0) in terms of the physical
quantities, we put

f(+)'(0)=f<+)(0)—P(')§) N Trwm®)
Bru
=[D0)+ 3 ———Papy(0). (A1)

P()=P, P’ SINTAp(s)

The value f(0) can be expressed, using the subtracted
dispersion relation, as follows:

FE(0) = FP (u)+- _j: o

m (,U.2—— V]gz)ll/;z

®

dv

“
L —{ox () o)}, (A2
47r2 /}‘ kl/{ ( >+ ( >} \ )

Substituting Egs. (A1) and (A2) into Eq. (20), we obtain

2 V]£2

f +) ( 'u) + ﬁ e

4 m(u2—vp?)

Brw)

(=P, P sInTap ;)

Pnp(i) (O)

)

1 v
- dy[;{an @) Forp()}

2
Ant ),

1 v
— 2 4mBrwyLapy <“>:| . (A3
=P, P’ v u

This is equivalent to the previous sum rule'! for the
s-wave scattering length.



