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is known. F/D ratios which differ greatly from the
statistical values are also interesting, because in the
present context they provide rather strong statements
about the dynamics; i.e., about the relative strength of
the invariant amplitudes.

As a case in point, consider the 1V"'(1570) resonance
with J~=-',—.There is evidence that this state has a
coupling to Eg at least comparable to its coupling to
Ãx."This means that r is unlikely to lie between 0 and

"F. Uchiyama-Campbell and R. K. Logan, Phys. Rev. 149,
1220 (1966).

1.Tables III and IV reveal that the S~' and St.-' of 1134
and the 8' of either 56 are the only likely assignments,
using the statistical values. The former possibilities fit
in well with the work of Ref. 7. On the other hand, this
state has previously been mentioned as a candidate for
the 70 by Gyuk and Tuan. "If their hypothesis is ac-

cepted, then the observed coupling gives a fairly strong
constraint on the dynamics; for example, 70 dominance
is obviously favored.

"I. P. Gyuk. and S.F.Tuan, Phys. Rev. Letters 14, 121 (1965).
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Sum rules of the superconvergent type are obtained for the 7' helicity-Rip and helicity-nonQip amplitudes.
The sum rules for the helicity-nonQip amplitudes are shown to be consistent with the Regge-pole-dominance
model. Investigation of the sum rule for 8& ) (v) leads us to speculate as to the existence of resonances on

Np, d, » and N~ baryon trajectories.

I. INTRODUCTION

ECENTLY, an exact sum rule for the s- p helicity-
nonAip forward-scattering amplitude with charge

exchange has been proposed in order to investigate
singularities in the complex J plane. ' ' Assuming that
there are no other singularities in the complex J plane
except the p Regge pole above J=—1 at /=0, we sepa-
rated the helicity-nonQip amplitude ft '(v) into the

p-pole term f, (v) and. the remaining term ft "(v),
which vanishes faster than v ' at infinity. Since the
f' i'(v) is odd under crossing syinmetry, satisfies an
unsubti. acted dispersion relation, and vanishes faster
than v ' for v —+ao, we were immediately led to the
following sum rule of the superconvergent type:

4rr8, I',,(v/p) ) =0—, (1)

~

=O.Og1~0.002.
4~ 2m)

'K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967),
hereafter referred to as I.

'A. A. Logunov, L. D. Soloviev, and A. ¹ Tavkhelidze,
Phys. Letters 24B, 181 (1967);D. Horn and C, Schmid, California
Institute of Technology Report, CALT-68-127 (unpublished).

' W. S. Woolcock, in Proceedings of the Aix-en-Provence Confer-
ence on E&lementury Particks, 1NZ {Centre d'Etudes Nucleaires,
Saclay, France, 1961), Vol. I, p. 459.

An experimental check of the above sum rule has sug-
gested to us that Eq. (1) holds' within the present ac-
curacy of the total cross-section measurements. There-
fore, we have concluded that the experiments support
the p Regge-pole-dominance model at high energy, even
though we cannot rule out the possibility of the exis-
tence of other singularities (including a p' pole or a cut)
if the pole residue or discontinuities are reasonably
small.

This p-pole-dominance model has also been strongly
favored' by the remarkable dIGraction shrinkage at
high energy for the reaction s. +p~ sr'+is, and the
dip phenomena observed in the above and other
reactions. The single-p-exchange model, however, pre-
dicted no polarization for the above reaction s. +p ~
m'+n, which was not consistent with the observed
nonzero polarization.

Recently, a possible model to overcome this difhculty
was proposed by Desai, Gregorich, and Ramachandran. '
They pointed out that if baryon trajectories continue
to rise for quite large energies, then, as a consequence of
assuming the total amplitude to be given by the single

p Regge-pole term and the direct-channel contribution
from baryon trajectories, it is possible to explain the

' See Table I and Fig. 1 of I.
~ R. Logan, Phys. Rev. Letters 14, 414 (1965).' F. Arbab and C. Chiu, Phys. Rev. 147, 1045 {1966);S. Fraut-

schi, Phys. Rev. Letters 17, 722 (1966).
~ B. R. Desai, D. T. Gregorich, and R. Ramachandran, Phys.

Rev. Letters 18, 565 (1967).
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magnitude and the energy dependence of the polariza-
tion as well as the differential cross section.

In the present paper we take the p-dominance model
as our starting point for both the helicity-Rip and
helicity-nonQip amplitudes, and investigate the super-
convergence relations derived from the above assump-
tion. In Sec. II, we obtain a sum rule8 for the helicity-
Qip amplitude with charge exchange, which connects
the integral over direct-channel resonances with p Regge
parameters. Ke then show that the sum rule does not
seem to hold for the currently known baryon resonances.
Therefore, we speculate as to the possible existence' of
Ep, A~, and N& resonances connected by the MacDowell
principle" to the X, A~, and N~ resonances, since these
possible new resonances will contribute in such a way
that the sum rule may hold.

In Sec. III a sum rule for BH & (v) which connects the
low-energy resonance parameters with the I' and P'
Regge residues for the helicity-Rip amplitude is dis-
cussed. Since the convergence of the integral is rather
rapid in this case, we use the above relation as an ad-
ditional constraint for the I' and I" parameters de-
termined from experimental data, which will be shown
to be useful in the investigation of zN polarization.

In Sec. IV, two kinds of superconvergence relations
are investigated from two different assumptions in
order to probe the J singularities with the vacuum
quantum numbers. One of them will be proved to be
equivalent to the sum rule for the s-wave scattering
length. "

ap—1

ImB, (v) =n, (n,+1)
p p

(4)

in an asymptotic form at high energies. The factor
(n, +1) is included to emphasize the zero at n, = —1.
The quantity C, is dehned to be dimensionless, and is
regular except for additional zeroes at np= —2, —3,—4, . Then, the function vB& &'(v), which is odd
under crossing symmetry, satis6es an unsubtracted
dispersion relation and the following asymptotic be-
havior: vB' '(v) &v '. Therefore, we obtain the follow-

K. Igi and S. Matsuda, University of Tokyo Report, March,
1967 (unpublished), hereafter referred to as II.' C. B. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).

'0 S. W. MacDowell, Phys. Rev. 116, 774 (1959)."K. Igi, Phys. Rev. Letters 9, 76 (1962); Phys. Rev. 130,
820 (1963).

II. A SUM RULE FOR THE HELICITY-FLIP
AMPLITUDE 8' &(v)

Let us begin with summarizing brieAy the sum rule
derived in. II for the helicity-fhp amplitude B' '(v). We
assume that B' &(v) can be separated as

B& &(v) =B,(v)+B' "(v),

with

ing superconvergence sum rule:

dv v ImB&—
&'(v) =0.

Assuming the Regge asymptotic behavior to be already
established at high energies, v) v~ (we take v~=5.46
GeV as in I), we obtain

1 vA

4&rf'—+
Cp(X p Vg

dv v 1mB& &(v)=—— . (6)
7l

For v&v&, we may put

ImB'—& (v)=ImBv(v),

since we have already assumed that the p Regge asymp-
totic behavior is established at these high energies.
Chew and Jones" have argued that the resonance and
Regge regions may overlap in some intermediate-energy
regions. Practically, Barger et c/. "have shown that a
considerable number of experimental data down to 1.4
GeV can be explained by a superposition of direct-
channel resonances and the Regge background term.
Therefore, we will assume

ImB' &(v)=Ba„& &(v)+ImB, (v)

for v~) v) v»r. (v»r is supposed to be the lowest energy
at which Barger's analysis is applicable; consequently
v»r ——1.4 GeV was chosen. ") Here, the subscript Res
stands for the contribution of all the direct-channel
resonances. Thus, it would be reasonable to use the
values of the direct-channel resonance parameters cited
in Ref. 14 (especially the total width and elasticity)

For v&v~, we may assume

ImB& &(v)=ImBa„& '(v).

In this energy region, as direct-channel resonance
parameters, those tabulated in the Rosenfeld table"
have been used.

"One of the authors (K.I.) wishes to thank Professor G. F.
Chew for helpful comments in the approximation for evaluating
the integral in II."G, F. Chew and E. Jones, Phys. Rev. 135, B208 (1964)."V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966); V.
Barger and D. Cline, ibid. 155, 1792 (1967). In the present paper
we have calculated the low-energy integrals in the narrow-width
approximation, using the interference model by the above authors.
IIowever, if the phase shifts of +E scattering become available
up to reasonably high energies in the near future, we can argue
more precisely about the superconvergence relations."A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).

Experimental Test

Unfortunately, ImB~ &(v) is not simply related to
cross sections. Therefore, we make the following approxi-
mations" in the evaluation of the integral

vA

dv v 1mB&-&(v):
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TABI.R I. Contributions to
vA HgII—=— dv v IInBg 3( )(s) and I2=— Qv j.Incog ( ){u)

7f p 277 p

(s A =5.46 GeV) from each resonance in the narrow-width approximation.

Resonance
(mass in MeV)

Spin parity Total width
J~ I'g~ {BeV)

Elasticity
Ql+

Contribution
to II

Contribution
to I2

~,(1236)
hg(1920)
a (242o)
a&(28so)
~&(3230)
N (is2s)
N (219O)
N (2650)
N~(3030)
N„(3350}
N ( 938)
N„(1688)
N (2220)
N (2610)
N (2970)

(1400)
N, (157o)
N&{167o)
Ep'(1 700)
hp(1670)

Total

3+
2
7.+
2~1+

v+
19/2+

3—
27—
2~1—

215—

19/2-
1+
+
+

213+
17/2+

1+
21—
25—
21—
2

2

0.12
0.17
0.28
0.40
0.44
0.11
0.24
0.40
0.40
0.10

~ ~ ~

0.10
0.20
0.30

0.20
0.13
0.14
0.24
0.18

1.0
o.33 —0.50
0.11 —0.12
0.03 —0.05
0.003—0.02
0.65
0.15 —0.25
0.05 —0.08
0.007—0.015
0.003—0.01

0.65
0.05
0.025

0.70
0.30
0.40
1.0
0.40

16.4
9.8—14.8

10.4—11.4
6.9—11.4
1.1—7. 6

10.6
10,5—17.5
10.7—17.1
2.3—5.0
0.3—1.2

—1.1
14.7—25.5
43

9.7
0.1—6.1
0.8—0.2

106.6—151.4

—14.6
(—2.0)—(—3.0)
{—1.2)—(—1.3)
(-o.s)—(-o.9)
(—0.1)—{—0.5)

2.1
0.8—1.3
0.5—0.8
0.1—0.2
0.0—0.1

14.8
2.1—3.7
0.3
0.3

2.6
0.0—0.9
0.1
0.1
2.6—7.1

vA

47rf'+—
In the narrow-width approximation, we can obtain

1 vA

By making use of approximations (7), (8), and (9), in Table I. We then obtain the following numerical
the sum rule (6) would be modiaed as values: The left-hand side of Eq. (10) is given by"

106.6—151.4. The right-hand side of Eq. (10) is given by
pnp~("~ ' 23.2 for the solution (a) by Chiu, Phillips, and Rarita"

(n, =0.576, C,=3.36); or 23.1 for the solution (b)'r
(n, =0.576, C, =3.35). Therefore, the sum rule (10) does
not seem to hoM as long as we use only the currently
known baryon resonances in the above approximations.

dv p ImBn„&—
&(v)

~ rg~gg~(3r(~' —m' —p')
=peep

l+,I 2

The summation extends over resonances with 2mf~
&Sf~~'—m' —p'. Here CI takes the values -,'and ——,

'
for I=~ and I=~, respectively. I'~+, g~+, and 3Ig~ are
the total width, elasticity, and mass of the resonance
of total angular momentum J=l&-,'; m is the nucleon
mass; and q&+ is the center-of-mass momentum given by

Sy8culations

%e wish to make some theoretical speculations as to
the reason why there is such a discrepancy.

l. Other Possible Baryon, Trajectories

Some time ago the following speculation was made':
The Sp (D~,Xp) resonances could possibly exist, too,
as a consequence of the MacDowell principle, " if the
E (hp, X~) resonances were to lie on the Chew-Frautschi
plot. " As is evident from Eq. (11) and Table I, the
contributions to the integral

dv v ImBa..& ~(v)

L(~l++m)' —y'j'"L(~i+ —m)' —u'j'" from resonances on the E, 6& and N~ trajectories are
all positive except for the nucleon. However, if reso-

2ME~

For each resonance, we tabulate the contribution to

dv v ImBR„' &(v)

'6 The range of values is due to the uncertainty in the elasticity
determination of Barger et al. (see Ref. 14).

"C. B. Chiu, R. J. N. Phillips, and W. Rarita, Phys. Rev.
153, 1485 {1967).

I' G. F. Chew and S. Frautschi, Phys. Rev. Letters 7, 394
(1961).
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nances on the Ãp, h~, E~ trajectories exist at all, "their
contributions all become negative. Therefore, the sum
rule (10) has a tendency to hold. Further investigations
on baryon resonances are thus quite important.

III. A SUM RULE FOR THE AMPLITUDE
B +) (v) AND v&N POLARIZATION

Similarly, we can derive the following sum rule'0 for
the helicity-flip amplitude B(+'(v) which is odd under
crossing symmetry:

dv ImB&+&'(v) =0. (13)

Z. Possible Ambiggits'es in the A pproximations

First, the widths and elasticities of higher baryon
resonances have not been definitely determined.
Secondly, the contribution of such a resonance, like the
Roper resonance (which is not found in. the total cross-
section measurements), in our analysis, has been esti-
mated using the Breit-signer formula. This might also
be an ambiguous point. Thirdly, we assumed the
Regge asymptotic behavior to hold above v~ (=5.46
GeV). If, however, baryon trajectories which might
rise to infinite energies could give non-negligible con-
tributions even at high energies for v& v~, these effects
would also have to be taken into account. Experi-
mentally, the higher the energy, the more extra-
ordinarily small the elasticities become. Therefore, they
may be expected to be small.

If the sum rule (10) still does not hold even after all

the above possibilities have been checked, then the
assumption of no singularities for n, &J&—1 must be
abandoned.

Following the same procedure as in the previous section,
Eq. (16) becomes

g m ='m+ dv ImBa„&+)(v) =——
47r 2~' 2z' p,

CP (') — (1'l)
I (s)=I,J '

The speculations 1 and 2 in Sec. II should also apply in
evaluating ImBR„&+)(v). However, since the conver-
gence of the above integral is very rapid, the main
contribution comes from low-energy resonances like
i}'t and A(1236) (see Table I). Thus, it is probable that
the other possible higher baryon resonances and ambi-
guities in their parameters will not affect the sum rule
so much.

Therefore, assuming Eq. (19) to be practically useful,
we can obtain an additional constraint to be imposed
on the helicity-Rip Regge parameters for the I' and I"
determined from experimental data. This constraint
would become useful in the investigation of xÃ polari-
zations. Chiu, Phillips, and Rarita 7 obtained two possi-
ble solutions, (a) and (b), using total cross sections,
differential cross sections for xX elastic and charge-
exchange scattering, and &r p elastic polarization.

Let us impose the above constraint on the solutions.
Numerically, the left-hand side of Eq. (16) is calculated
to be 2.6—i.1." On the other hand, solution (a) (CP
=—2.74, CP.———8.93) predicts the right-hand side of
Eq. (16) to be —25.3. Solution (b) (CP = —0.355,
CP ———0.951) predicts the right-hand side to be —2./.
Both values should be compared with the magnitude
of the nucleon term g„'/4 (&—r15). Therefore, the solu-
tion (b) would be preferred.

We have separated B&+'(v) as

B"'(v)= Z B-p&;&(v)+B'+"(v)
S'(s)=a, Z'

with
CP (.) (v) + P(i&

p& '}(v) &&p (')

(14)

(15)

IV. SUM RULES„FOR THE f&+&(v) AMPLITUDE
AND SINGULARITIES IN THE

COMPLEX J PLANE

Let us define the amplitude" f'+&'(v) by

f + '(v) =f + (v) — g fp(;)(v),
P (i) P,I"

with

We assumed here that no J singularities extend above
J=0 at t=0, except for the I' and I"poles.

If the Regge behavior is assumed to hold at high
energies s &v~ as before, one can obtain

2 m vA ='m—+ dv ImB&+&(v) =-
4m 2x2 2' p

1 Cp&)(v
Imf P(O(v) = «P(')

~

~

4w
'

p, kt

Since f(+"(v)/v and vf(+"(v) are odd in crossing sym-
metry, we shall derive sum rules for each of the two
amplitudes and investigate the consequences.

(A) The dispersion relation for f&+&'(v)/v can be
written

(vA }}

X Z CP()i —
i

P(i) P P' (}M)

"Some of the possible candidates for the Np resonances may
be found in the Rosenfeld table (Ref. 15)."R.Gatto, Phys. Rev. Letters 18, 803 (1967);L. A. P. Balazs
and J. M. Cornwall, Phys. Rev. 160, 1313 (1967). These authors
have also discussed the sum rule for the 8(+)(I). They confined
their attention to low-energy resonances.

&&g} i(+&'&„} &(+)'&O} &,2 &
&

& &

)R-.
v v 4&r 2m 4)&—v vs+ v

1 " ( 1 1 f&+)'(v')
dv'~ —— Im (19)

7r „&v'—v v'+v v'

"We de&}&M f&+&(v)=—LA&+&(v)+v8&+&(v)j/4r.
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h = —
y 2 If there are no other singularities

~

dexcept the P and P' poles above J= 0, the left-hand si e
of Eq. (19) vanishes faster than v '. Thus, we obtain

gr 21 2
0= f(+)'(())

4x ns x

f (+) '(v')
dv' Im . (20)

/
V

a F'(f)+2O'F (;) V4

(;&+2(l ) (21)

Th main point of diA'erence between Eqs. (20) and

(21 is that Eq. (21) was derived under much stronge
e mai

n er
assumptions than Eq. (20). No singularities for 0)J)
—2 were required in addition to case (A). Theoretics, y,
cuts" and a Axed pole" at J=—1 could possibly be ex-
pected. I.et us check this experimentally using the above
sum rules [Eqs. (20) and (21)]. The best parametri-
zation for the P and P' poles is, according to Scanio, '4

eI =0.69, CF =0.810, and C .=2.63. Substituting these
values in Eq. (21), we find it to hold within an error
of 1/~. Therefore, experiments are, consistent with
weak-cut discontinuities, if they exist.

V. CONCLUDING REMARKS

As was discussed in Secs. I and IV, where the absorp-
tive part of the amplitudes f(+)(v) was expressed in
terms of total cross sections, the sum rules have been
shown to be quite consistent with the Regge-po e
dominance. The sum rule for 8 (+'(v) would be
useful as a constraint imposed on the helicity-Aip

"$. Mandelstam, Nuovo Cimento Bo, 1148 (1963)."t . E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967);
S. MandelstaIn and I,. I . Wang, i'. 160, 1490 (196 ).

J. J. G. Scanio, Phys. Rev. 152, 1337 (1967).

Th' l t' can be easily shown to be equivalent tois re a ion
the sum rule for the ~E s-wave scattering lengt w ic
was used to deduce the P' pole" (see Appendix).

(8) We next come to the superconvergence sum ru e
for vf'+"(v) under the assumption that there are no
singularities with the vacuum quantum numbers except
that theP andI" poles above J=—2. Then, we are e
to the following sum rule':

p 1
27r2f' + ——dv kr (0. „(v)+-0. -„(v)).

fs 2p p

Regge-pole parameters since the integral converges
ra idly and is saturated by low-energy resonances.
Investigation of the sum rule for B,v„ which con-
verges rather slowly, has led us to suggest a set of reso-
nances on the Ep, A~, and E~ baryon trajectories. 1A'e

h th t re careful search for other baryon reso-
rs es eciallnances as well as resonance parameters (especia y

widths and elasticities) for all resonances, will be made
in the near future. If the sum rule for 8( '(v) still does
not hold, even taking into account the above effects,
then one will be forced to introduce singularities above
J=—1 in addition to the p pole.

The value f(+)(0) can be expressed, using the subtracted
dispersion relation, as follows:

f2 ~4
f(+)(0)= f(+)(v)+

5'I (p vv )v{,

—(~.—.(v)+~. '.(v)) (A-')
p, kV

4

Substituting Eqs. (A1) and (A2) into Eq. (20), we obtain

R~
2 2

f(+)( )+ ;+—--
4)r 1&"(V v)g ) &({)=~',p' sln7r—(){i(;)

P v{f)(0)

&v -(~. —v(v)+~. ".(v) &

4X2 |
47rpI {;) 1„{;)— . (A—3)

F'(i)=F', I '
V P

This is equivalent to the previous sum. ru e"for the
s-wave scattering length.

APPENDIX: EQUIVALENCE OF EQ. (20) WITH
THE SUM RULE FOR THE s-WAVE

SCATTERING LENGTH

In order to express f'+'(0) in terms of the physical
quantities, we put

f'+'(o) =f'+'(o) — 2 f~(')(v)
F (')=F,F '

(3p(r)= f'+'(o)+ 2 —. —P-, (o) (A1)
I'(s)=P, F" SinxeF (,)


